US ERA ARCHIVE DOCUMENT

Comparison of Process Technology

MIDREX vs. ENERGIRON June 6th, 2013

Goal of Process: Convert Pellets into HBI

Pellets min. 66 % Fe

Direct Reduction

HBI min. 91 % Fe **Hot Briquetted Iron**

Available Process Technology: MIDREX / ENERGIRON

Reducing gas

$$CH_4 + CO_2 = 2CO + 2H_2$$

$$2CH_4 + O_2 = 2CO + 4H_2$$

Reduction process

$$Fe_2O_3 + 6CO(H_2) = 2Fe + 3CO_2(H_2O) + 3CO(H_2)$$

Example MIDREX: LGOK

LGOK II (Midrex): Gubkin, Russland

Capacity: 1,4 Mill. t HBI

Start up: 2007

Example Energiron: Emirates Steel

Start up: 2011

Comparison: MIDREX vs. ENERGIRON

	MIDREX/SVAI	ENERGIRON/Danieli
Core Process /HBI	 Reducing gas from reformer Low pressure level (2 bar), high gas velocity Briquetting process Discharge system HDRI retrofittable 	 Reducing gas from partial oxidation and in-situ reforming High pressure level (8 bar), low gas velocity Briquetting process Discharge system HDRI retrofittable
Reference units	 LGOK 2 (1,4 mt HBI) JINDAL Shadeed (1,5 mt HBI) LGOK 3 (1,8 mt HBI, 2015) Design and operation up to 2,0 Mio t DRI/HBI	 TERNIUM 4M (1,0 mt HDRI) SUEZ (2,0 mt HDRI, 2013) NUCOR (2,5 mt CDRI, 2013) No reference plant Zero Reformer (ZR) in combination with HBI Design and under construction up to 2,5 Mio t DRI
Control range	60-100% of nominal output	60-100% of nominal output
CO2 removal	Part of CO2 is used for the reforming process	Integrated in the ZR process concept

Reactor

MIDREX shaft

Flow feeder

LION DRI

Screw Feeder

Briquetting Machine

Briquette Strand Separator

Briquetting decks Energiron ZR

Comparison: Reactor

	MIDREX/SVAI	ENERGIRON/Danieli
Coating	After day bins. In case of different oxide qualities no specific coating. Short time for drying.	Prior day bins. Scpecific coating in case of different oxide qualities. Drying in day bins.
Material feed	Vertical conveyor into charge hopper Central down pipe with upper seal leg Distribution to 16 down pipes into the reactor.	Vertical conveyor into charge hopper. 4 pressurized charging bins. 4 down pipes into the reactor.
Material flow	Upper Middle Burden feeder Lower	Flow feeder Cluster breaker
Material discharge	Central down pipe with lower seal leg Product discharge chamber	Rotary valve 2 pressurized discharge bins
HDRI/CDRI	Retrofittable at briquetting level	Retrofittable before discharge bin
Size of shaft	7,1 m diameter	6,3 m diameter
Tower height	131 m	138,5 m

Comparison: Briquetting

	MIDREX/SVAI	ENERGIRON/Danieli
Briquetting	1 distributing bin 6 (7) Briquetting machines each with 40 t/h.	2 Distributing bins 6 (7) Briquetting machines each with 40 t/h
HBI fines recycling	Hot screening after briquetting and recycling to briquetting machines via vertical conveyor.	Hot screening after briquetting and recycling to briquetting machines via vertical conveyor.
HBI cooling	2 steel plate conveyor belts with spray-cooling. Full flexibility between briquetting machines and cooling conveyors.	2 steel plate conveyor with spray-cooling. Limited flexibility between briquetting machines and cooling conveyors.

Comparison: Process gas

	MIDREX/SVAI	ENERGIRON/Danieli
Reducing gas production	Reformer = Recuperative heat exchanger with endothermic reforming reaction. 600 pipes with Ni-catalyst. Reforming of CH4 with CO2 from recycled process gas at Ni-catalyst.	Heater = Recuperative heat exachanger. 80 bundles of pipes (Coils) with convection and radiation section. Partial oxidation of CH4 with O2 before rector. In-situ reforming of this gas at metallic bulk material in the reduction shaft.
Temperatur/flow rate of reducing gas	Approx. 980 °C (bevor CH4 addition), 380.000 Nm3/h	Approx. 970 (before O2 addition) °C, 540.000 Nm3/h
Top gas cleaning	Approx. 350 °C, .000 Nm3/h. Venturi/package scrubber	Approx. 470 °C, 640.000 Nm3/h. Heat recovery for CO2 removal . Venturi scrubber.
Gas compression	2 serial radial compressors. Approx 60 % production capacity with 1 compressor possible.	2 parallel radial compressors. Approx. 60 % production capacity with 1 compressor possible.
Life time reducing gas production	Replacement pipes every 10 years and catalyst every 5 years Replacement of single pipe during Standby-operation possible.	Replacement bundles every 10 years Replacement of single pipe during Standby-operation possible
Gas sealing	Tightening via seal leg and seal gas system.	Tightening via pressure locks

Comparison: Consumption figures

	MIDREX/SVAI	ENERGIRON/Danieli
Oxide input	Approx 1,4 to/to HBI	Approx.1,4 to/to HBI
Natural gas	< 13 MMBtu / to HBI	< 13 MMBtu / to HBI
O_2	Not necessary	Approx. 60 m ³ / to HBI
N_2	Not necessary	Approx. 75 m ³ / to HBI
Electric energy	Approx. 125 kWh / to HBI	Approx. 115 kWh / to HBI
Personal years	Approx. 150	Approx. 150

